Search results for " bonding"

showing 10 items of 934 documents

Hexakis(diethylacetamide)iron(II) hexahalorhenate(IV) ionic salts: X-ray structures and magnetic properties

2015

Two novel Fe<sup>II</sup>-Re<sup>IV</sup> compounds of general formula [Fe<sup>II</sup>(DEA)<inf>6</inf>][Re<sup>IV</sup>X<inf>6</inf>] where DEA = diethylacetamide and X = Cl (1) and Br (2) have been prepared and magnetostructurally characterised. Complexes 1 and 2 are isomorphic ionic salts that crystallise in the trigonal crystal system with space group R(-3). The rhenium(IV) ion in 1 and 2 is six-coordinate with six chloro (1) or bromo (2) ligands building a regular octahedral chromophore. The Fe<sup>II</sup> ion is also six-coordinate, and bonded to six oxygen atoms from six DEA molecules. [Fe<sup&gt…

/dk/atira/pure/subjectarea/asjc/1600/1606/dk/atira/pure/subjectarea/asjc/1600/1604Rhenium(IV) complexes/dk/atira/pure/subjectarea/asjc/2500/2505ChemistryInorganic chemistrySupramolecular chemistryIonic bondingchemistry.chemical_elementDiethylacetamideCrystal structureRheniumIron(II) complexesMagnetic susceptibilityX-ray diffractionInorganic ChemistryCrystallographyOctahedronMagnetic propertiesX-ray crystallographyMaterials ChemistryMoleculePhysical and Theoretical ChemistryPolyhedron
researchProduct

Molecular association of cryptand 221D in NaCl-water solutions. A small-angle neutron scattering study

1993

Molecules of 5-Decyl-4,7,13,16,21-pentaoxa-1,10-diaza-bicyclo-[8.8.5.]tricosan (221D) and its sodium complex, with both a hydrophobic and a hydrophilic portion, are expected to form aggregates in water solutions. This was confirmed by surface tension measurements. The aggregation behaviour was studied by small-angle neutron scattering at two different [NaCl]/[221D] molar ratios, such as to obtain, in one case, aggregates entirely made up of ionic monomers, and in the other, mixed micelles constituted by both ionic and non-ionic units. The variation of the aggregation number and number of aggregates indicated that, in the former case, smaller micelles were formed, as a consequence of repulsi…

010302 applied physicsAggregation numberAqueous solutionChemistryCryptandGeneral Physics and AstronomyIonic bonding02 engineering and technologyNeutron scattering021001 nanoscience & nanotechnology01 natural sciencesMicelleSmall-angle neutron scatteringSurface tensionCrystallography[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciences0210 nano-technologyLe Journal de Physique IV
researchProduct

First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides

2020

Valuable discussions with E. A. Kotomin are gratefully acknowledged. Research contribution of R. E. and A. I. P. has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications.” The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsAlkaline earth metalMaterials sciencePhysics and Astronomy (miscellaneous)F centerperovskitesGeneral Physics and AstronomyIonic bondingElectronic structure7. Clean energy01 natural sciencesCrystallographic defectCrystallographyAb initio quantum chemistry methodsVacancy defect0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Ab initio calculations010306 general physicsShallow donorPerovskite (structure)
researchProduct

Ab initio calculations of the electronic structure for Mn2+-doped YAlO3 crystals

2020

The electronic structure of Mn2+ ion substituted for the host Y atom in orthorhombic bulk YAlO3 crystals has been calculated by means of hybrid exchange-correlation functional HSE within density functional theory. The supercell approach has been used to simulate in Pbnm YAlO3 crystal the point defects, Mn-dopant and compensated the F+ center (oxygen vacancy with one trapped electron), to make unit cell neutral. Large 2 × 2 × 2 supercells of 160 atoms allow us to simulate substitutional point defect with concentration of about 3%. Mn2+ ions substituting for host Y form covalent Mn–O bonds, in opposite to the mostly ionic Y–O bond. The F center inserted to compensate the Mn2+ dopant in YAlO3 …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)DopantBand gapGeneral Physics and AstronomyIonic bondingElectronic structure01 natural sciencesCrystallographic defectCrystalCrystallographyAb initio quantum chemistry methods0103 physical sciencesDensity functional theory010306 general physicsLow Temperature Physics
researchProduct

Stabilization of primary mobile radiation defects in MgF2 crystals

2016

Abstract Non-radiative decay of the electronic excitations (excitons) into point defects ( F – H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceExcitonRelaxation (NMR)Quantum yieldIonic bonding02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectMolecular physicsOrders of magnitude (time)0103 physical sciencesRadiation damage0210 nano-technologyInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Theoretical search for very short metal-actinide bonds: NUIr and isoelectronic systems.

2004

, respectively. These analogues provide anexample ofthe isolobal principle, now without any outsideligands onthePt atom,asituation describedasits “autogenicisolobality”. These systems have multiple C Pt bonds. Theisolobal principle of Hoffmann refers to the similar chemicalbehaviorofansphybridandametalatomwithligands,-ML

010405 organic chemistryChemistryIsolobal principleGeneral ChemistryGeneral MedicineActinide010402 general chemistryIridiumMultiple bonds01 natural sciencesCatalysisComputer chemistry0104 chemical sciencesMetalCrystallographyDensity functional calculationsvisual_artAtomddc:540visual_art.visual_art_mediumPhysical chemistryUraniumMultiple bondingAngewandte Chemie (International ed. in English)
researchProduct

Supramolecular open-framework architectures based on dicarboxylate H-bond acceptors and polytopic cations with three/four N–H+donor units

2015

International audience; Supramolecular assemblages based on anionic H-acceptors and cationic H-donors have been envisioned to elaborate open frameworks maintained by ionic H-bonds. Combinations of di-anionic chloranilate (CA2-), oxalate (Ox2-), or terephthalate (BDC2-) and trisimidazolium or tetrapyridinium derivatives (three and four N-H+ donors, respectively) yielded five architectures of formulae [(H3TrIB)(CA)1.5[middle dot]2DMF[middle dot]2.5H2O] (1), [(H4Tetrapy)(CA)2[middle dot]3DMF] (2), [(H3TrIB)(HOx)(Ox)[middle dot]5H2O] (3), [(H4Tetrapy)(Ox)2[middle dot]5H2O] (4), and [(H4Tetrapy)(BDC)2(H2O)[middle dot]1DMF[middle dot]3H2O] (5) (with TrIB = 1,3,5-trisimidazolylbenzene and Tetrapy …

010405 organic chemistryChemistryStereochemistryHydrogen bondSupramolecular chemistryCationic polymerizationIonic bondingSorptionGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciencesOxalate0104 chemical sciencesSolventchemistry.chemical_compoundCrystallography[CHIM.COOR]Chemical Sciences/Coordination chemistryGeneral Materials ScienceCrystEngComm
researchProduct

Half-sandwich complexes of molybdenum-(III), -(IV) and -(V) with P–O and P–N bifunctional ligands Ph2PCH2X (X = 2-oxazolinyl, or C(O)NPh2)

2000

International audience; The reaction of the ligands Ph2PCH2X (X = 2-oxazolinyl, I; or C(O)NPh2, II) with the half-sandwich molybdenum(III) precursors [Mo(η-C5R5)(μ-Cl)2]2 (R = H or Me) has been investigated. Ligand I reacts with both complexes to form the corresponding adducts [Mo(η-C5R5)Cl2(Ph2PCH2C3H4NO)] (R = H, 1; or Me, 2). The reaction between I and [MoCp*Cl4] (Cp* = η-C5Me5) affords [MoCp*Cl4(Ph2PCH2C3H4NO-κ1P)] as a kinetic isomer, which then transforms quantitatively to [MoCp*Cl3(Ph2PCH2C3H4NO-κ2P,N)]+Cl−, 3. Ligand II reacts with [MoCp(μ-Cl)2]2 (Cp = η-C5H5) to afford the adduct [CpMoCl2{Ph2PCH2C(O)NPh2-κ2P,O}], 4, as an equilibrium mixture of two isomers. Longer reaction times in…

010405 organic chemistryChemistryStereochemistryLigandIonic bondingchemistry.chemical_elementGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesAdductchemistry.chemical_compoundMolybdenum[CHIM.COOR]Chemical Sciences/Coordination chemistryDirect reactionBifunctionalSingle crystal
researchProduct

From self-inclusion and host-guest complexes to channel structures

2012

Various supramolecular interactions are applied as driving forces in self-assembly and molecular recognition processes. Single crystal X-ray diffraction method is especially important for solid-state studies of non-covalent interactions as it reveals their influence on the molecular and supramolecular structures. This paper discusses structures of two completely different types of compounds in which a variety of intermolecular interactions are involved. It will be shown that strong and weak intermolecular hydrogen bonds in N-alkylammonium resorcinarene salts, depending on the type of anion, inclusion of resorcinarene upper rim pendant group or solvent molecules into the cavity, strongly aff…

010405 organic chemistryChemistryStereochemistryX-ray structure; supramolecular chemistry; hydrogen bonding; hydrophobic interaction; resorcinarene; palladium complexSupramolecular chemistryGeneral ChemistryInclusion (mineral)010402 general chemistryta11601 natural sciencesHost (network)0104 chemical sciencesCommunication channel
researchProduct

Structurally characterized dipalladium(ii)-oxamate metallacyclophanes as efficient catalysts for sustainable Heck and Suzuki reactions in ionic liqui…

2018

A new generation of dipalladium-oxamate metallacyclophanes of formulas (n-NBu4)4 [Pd2(ppba)2] (1), (n-NBu4)4[Pd2(dpvba)2] (2), (n-NBu4)4[Pd2(dpazba)2] (3), (n-NBu4)4[Pd2(dpeba)2] (4) and (n-NBu4)4[Pd2(tpeba)2] (5) [n-NBu4+ = tetra-n-butylammonium cation, H4ppba = N,N′-1,4-phenylenebis(oxamic acid), H4dpvba = N,N′-4,4′-diphenylethenebis(oxamic acid), H4dpazba = N,N′-4,4′-diphenylazobis(oxamic acid), H4dpeba = N,N′-4,4′-diphenylethynebis(oxamic acid) and H4tpeba = N,N′-1,4-di(4-phenylethynyl)phenylenebis(oxamic acid)] was prepared. The crystal structure of the solvated species of 2–4, namely (n-NBu4)4[Pd2(dpvba)2]·6MeOH·2Et2O (2a), (n-NBu4)4[Pd2(dpazba)2]·8MeOH (3a), and (n-NBu4)2[Pd2(dpeba)2…

010405 organic chemistryChemistrychemistry.chemical_elementIonic bondingCrystal structure010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesCatalysisInorganic Chemistrychemistry.chemical_compoundDeprotonationSuzuki reactionIonic liquidPhenylboronic acidPalladiumInorganic Chemistry Frontiers
researchProduct